Related news by tag Magnetism and superconductivity

Molekulen mundura konektatuta grafeno-kableen bidez

Sistema elektroniko baten osagairik txikiena izatera irits daiteke molekula bat. Premisa horrekin lan egin du azken urteotan elektronika molekularraren alorreko ikerketak, helburu garrantzitsu hau lortzeko: molekulak osagai elektroniko logikadun gisa erabiltzea.

Gailu molekular berriaren tunel-efektuko mikroskopiaren irudia eta grafeno-tiren konexioak. / nanoGUNE
Urrats berri bat argitara eman du gaur Science Advances aldizkariak. Argitalpen hori CIC nanoGUNEko, Donostia International Physics Center-eko (DIPC) eta Materialen Fisika Zentroko(CFM, CSIC-UPV/EHU) fisikarien eta CiQUSeko(Santiago de Compostelako Unibertsitateko Kimika Biologikoaren eta Material Molekularren ikerketa-zentroa) kimikari sintetikoen elkarlanaren emaitza da. Molekula bakarraz osatutako gailu molekular bat grafeno-kableen bidez “konektatzea” lortu du urrats berri horrek.

“Oso erakargarria da: molekula bakar batean informazioa metatzea eta irakurtzea lortu dugu”, baieztatu du Nacho Pascual Ikerbasque Profesor eta nanoGUNEko Nanoirudiak taldeko buruak. “Aspalditik dakigu molekulak nola sintetizatu; orain arte, ordea, ez genuen zirkuitu batera konektatzea lortu”, aitortu du. Horretarako, ikertzaileek “grafeno-tirak” garatu dituzte kable elektriko gisa erabiltzeko. Halaber, neurrira egindako metodo bat garatu dute molekularekiko kontaktua zehatz eta aurretik zehaztutako guneetan egiteko.

“Molekularekiko kontaktu hori erabakigarria dela ikusi dugu gailu molekularraren portaeran”, dio Jingcheng Li artikuluaren lehenengo egileak. “Horregatik, atomoen mailako doitasuna duten teknologiak erabili behar izan ditugu konexioaren urrats hori emateko”.

Molekularen sorkuntza-prozesuari dagokionez, gainazal metaliko batean gidatutako erreakzioetan oinarritutako metodo kimiko bat erabili dute. “Gailu molekularra sortzea erraza da”, azaldu du CiQUSeko talde-buru den Diego Peñak: “osagai molekularrak bakoitza bere aldetik diseinatu eta sintetizatu ditugu, muturretan “itsasgarri moduko bat” gehituz konexioak egitea aurreikusita zegoen puntuetan; hortik aurrerako lanak naturak berak egin ditu berez”, dio txantxetan.

Prozesua irudikatzeko “LEGO molekularraren” metafora erabili dute zientzialariek. Pascualen hitzetan, “naturaren legeak erabiltzea lortzen ari gara molekulak nanoegitura konplexuagoetan txertatzeko”, aipatu du.

Ikertzaileek tunel-efektuko mikroskopioa (STM) erabili dute gailu molekularraren funtzionamendua egiaztatzeko. Atomoak eta molekulak behatzeko metodo aurreratu bat da eta atomoen eta molekulen portaera neurtzeko aukera eskaintzen du. Molekulan metatutako informazio magnetikoak konexioan zein egoeratan bizirauten duen baieztatu ahal izan dute egileek teknika horrekin, eta horrek bide berriak irekitzen ditu elektronika eraginkorrago baterako material berrien garapenean.

FunMolDev (Functional Molecular Devices) ikerketa batzorde espainiarraren barruan egin dute lana, Espainiako Ekonomia eta Lehiakortasun Ministerioak, Eusko Jaurlaritzak, Galiziako Xuntak eta Europar Batasunak finantzatuta.

Grafenozko nanoimanak informazio-teknologia azkarrago eta jasangarriagoak lortzeko

Ikerketa-proiektuak lau urteko iraupena izango du, eta kide hauez osatuta dago: IBM Research, Donostia International Physics Center, Santiago de Compostelako Unibertsitatea, Delfteko Unibertsitate Teknikoa eta Oxfordeko Unibertsitatea. Bileran, proiektuaren abiapuntua ezarri da. Europan aitzindari diren sei ikerketa-erakunde hauen partzuergoak 3,5 milioi euroko funtsa jaso du Europar Batzordetik. Horizon 2020 FET-Open deialdi oso lehiakorrean izan da hautatua; hain zuzen ere, arrisku handiko eta eragin handiko abangoardiako diziplinarteko zenbait ikerketa-proiektu finantzatzen dituzte, etorkizuneko teknologia erabat berrietarako oinarriak ezarri behar dituztenak.

Neurrira egindako grafenozko nanoegitura magnetikoak fabrikatzeko eta horien ahalmena gailu kuantiko espintronikoen oinarrizko elementu gisa probatzeko partzuergoko kideek egin dituzten azken aurrerapen zientifikoak konbinatzen dira SPRING proiektuan. Epe luzeko helburu gisa ezarri dute grafeno hutseko plataforma bat garatzea, ingurumena errespetatzen duena, eta zeinetan spinak erabili ahal izango diren informazioa garraiatzeko, metatzeko eta prozesatzeko.

Spin-a elektroien propietate intrintsekoa da, iman ñimiñoak bailiran jokatzera eramaten dituena. Esaterako, material ororen elektroi guztiek daukate karga bat eta spin bat, azken hori erabakigarria da magnetismoan. 

Zientzialarien komunitatea bat dator spina dela materiaren propietate ideala kargan oinarritutako egungo nanoelektronikatik haratago joan eta beste osagai azkarrago eta energetikoki eraginkorrago batzuk lortzeko; horixe da hain zuzen ere espintronika kuantiko esaten zaion teknologia berriaren oinarria. Grafenoan spinak sortu eta detektatzeko oinarrizko legeak ikertuko ditu SPRING proiektuak, alegia, nola irakurri eta idatzi spinak, eta nola erabili informazioa transmititzeko.

Jose Ignacio Pascual Ikerbasque Ikerlaria da CIC nanoGUNEn, eta proiektuaren koordinatzaile zientifikoa ere bada; Pascualek azaldu duenez, “grafenoa egokia da etorkizuneko informazioaren teknologietarako, forma zehatza duten pusketak zehaztasun atomikoarekin ekoitz ditzakegulako. Proiektu honetan bere propietate magnetikoak aztertuko ditugu eta gailu kuantikoetan txertatzeko aukerak ikusiko ditugu”.