Related news by tag Magnetism and superconductivity
Conectados al mundo molecular con cables de grafeno
Una molécula puede comportarse como el componente más pequeño de un sistema electrónico. Con esa premisa, la investigación en el campo de la electrónica molecular se ha afanado en desarrollar en los últimos años nuevas aproximaciones que acerquen el ansiado objetivo de conseguir que las moléculas puedan ser usadas como componentes electrónicos dotados de lógica.
«La idea es fascinante: almacenar y leer información en una sola molécula», explica Nacho Pascual, Profesor Ikerbasque y líder del grupo de Nanoimagen de nanoGUNE. «Hace mucho que sabemos cómo sintetizar las moléculas, pero hasta ahora nunca habíamos podido conectarlas a un circuito», confiesa. Para lograrlo, los científicos crearon ‘tiras de grafeno’ con el propósito de utilizarlas como cables eléctricos, desarrollando también un método a medida que permitiera establecer contacto con la molécula de forma precisa y en lugares predefinidos.
«Descubrimos que el contacto con la molécula influye de manera crucial en cómo se comporta el dispositivo molecular», afirma Jingcheng Li, primer autor del artículo. «Por ello, hemos tenido que recurrir al uso de tecnologías de precisión atómica a la hora de dar el paso de la conexión».
En lo que respecta al proceso de creación de la molécula, los investigadores han empleado en esta ocasión un método químico basado en reacciones guiadas sobre una superficie metálica. «La creación del dispositivo molecular en sí es simple», explica el líder del equipo del CiQUS, Diego Peña: «diseñamos y sintetizamos los componentes moleculares por separado, dotándolos de extremos ‘de tipo adhesivo’ en los puntos donde estaba previsto realizar las conexiones; a partir de ahí, la naturaleza hace el resto del trabajo por nosotros», bromea.
Para ilustrar el proceso, los científicos han recurrido a la metáfora de un «LEGO molecular». En palabras del propio Pascual, «estamos consiguiendo usar las leyes de la naturaleza para ensamblar moléculas en nanoestructuras más complejas», asegura.
Los autores demostraron el funcionamiento del nuevo dispositivo molecular utilizando la Microscopía de Efecto Túnel (STM), un método muy avanzado para la visualización de átomos y moléculas que permite medir su comportamiento. Con esta herramienta, los autores del trabajo pudieron comprobar en qué condiciones la información magnética almacenada en la molécula sobrevivía a la conexión, lo que abre una nueva vía en el desarrollo de nuevos materiales para una electrónica más eficiente.
El trabajo se ha realizado en el marco del consorcio español de investigación colaborativa FunMolDev (Functional Molecular Devices), financiado por el Ministerio de Economía y Competitividad de España, el Gobierno de la Comunidad Autónoma Vasca, la Xunta de Galicia y la Unión Europea.
Nanoimanes de grafeno para tecnologías de la información más rápidas y sostenibles
El encuentro supone el punto de partida de un proyecto de investigación de 4 años coordinado por CIC nanoGUNE e integrado por IBM Research, Donostia International Physics Center, la Universidad de Santiago de Compostela, la Universidad Técnica de Delft y la Universidad de Oxford. El consorcio formado por estas seis instituciones de investigación europeas líderes ha recibido un total de 3,5 millones de euros de la Comisión Europea en el marco de la altamente competitiva convocatoria FET-Open Horizon 2020, que financia proyectos de investigación interdisciplinarios de vanguardia de alto riesgo y gran impacto, que deben sentar las bases de las radicalmente nuevas tecnologías del futuro.
El proyecto SPRING combina los últimos avances científicos de los miembros del consorcio para fabricar nanoestructuras de grafeno magnéticas hechas a medida y probar su potencial como elementos básicos en dispositivos cuánticos espintrónicos. El objetivo a largo plazo es el desarrollo de una plataforma hecha totalmente de grafeno, respetuosa con el medio ambiente, en la cual los espines se puedan usar para transportar, almacenar y procesar la información.
El espín es una propiedad intrínseca de los electrones que hace que se comporten como pequeños imanes. Por ejemplo, cada electrón en cualquier material lleva una carga y un espín, siendo éste último clave para el magnetismo.
La comunidad científica coincide en que el espín es la propiedad de la materia ideal para hacer avanzar el rendimiento de la nanoelectrónica actual basada en la carga, a una clase de componentes más rápidos y de mayor eficiencia energética, siendo ésta la base de la tecnología emergente llamada espintrónica cuántica. El proyecto SPRING investigará las leyes fundamentales para crear y detectar espines en grafeno, es decir, leer y escribir espines, y utilizarlos posteriormente para transmitir información.
José Ignacio Pascual, profesor de investigación Ikerbasque en el CIC nanoGUNE y coordinador científico del proyecto, explica que "el grafeno es ideal para las tecnologías de la información del futuro porque podemos fabricar fragmentos de forma definida con precisión atómica. En este proyecto vamos a estudiar sus propiedades magnéticas y su potencial para ser integrado en dispositivos cuánticos”.