Related news by tag NANODEVICES

Los electrodos magnéticos aumentan la eficiencia de las células solares

Un grupo de investigación internacional dirigido por el investigador Ikerbasque Luis Hueso —líder del grupo de Nanodispositivos de CIC nanoGUNE—, en el que participan científicos de la Academia de Ciencias China, del Instituto Max Planck (Alemania) y del propio nanoGUNE, ha desarrollado una célula fotovoltaica en la que por primera vez se utilizan materiales magnéticos como electrodos para proporcionar corriente. La prestigiosa revista científica Science ha dado a conocer los resultados de esta investigación, que, en opinión de Luis Hueso, “abre una nueva vía para convertir luz en electricidad de forma más eficiente”.

Según explica el investigador de nanoGUNE, “el dispositivo es simplemente una célula fotovoltaica fabricada con un material orgánico —fullereno C60— y electrodos magnéticos de cobalto y de níquel”. El fullereno C60, conocido como Buckyball, es una molécula con forma de balón formada por 60 átomos de carbono. Por otro lado, los electrodos magnéticos producen corriente con una propiedad añadida llamada espín. La combinación de ambos no es casual, ya que el fullereno es conocido por ser un material fotovoltaico que podría permitir controlar la orientación del espín. El uso y control de esta propiedad permite aumentar la eficiencia de la célula solar, que es así capaz de generar una mayor corriente. Según explica Hueso, “las células solares habituales tienen los espines ‘desordenados’ y nosotros, gracias al magnetismo, hemos conseguido ‘ordenarlos’ de forma que una mayor corriente pueda ser recogida”. Los investigadores han comprobado que el uso de este tipo de electrodos incrementa un 14 % la eficiencia fotovoltaica del dispositivo.

El dispositivo tiene otra ventaja añadida, ya que ha demostrado ser capaz de generar directamente corriente alterna, mucho más útil en aplicaciones que la corriente continua que generan las células solares habituales, ya que no requiere del uso de transformadores. “La inversión de corriente se produce en el propio dispositivo cuando los electrones creados por la luz interaccionan con los contactos magnéticos que tienen los espines ‘ordenados’”, explica Hueso.

Si bien es cierto que los investigadores han demostrado que el uso de electrodos magnéticos permite aumentar la eficiencia de las células fotovoltaicas, sostienen que todavía están lejos de conseguir una célula fotovoltaica óptima. Con ese objetivo están trabajando en la construcción de dispositivos similares utilizando materiales orgánicos que ya han demostrado ser más eficientes que el fullereno. El investigador afirma que “en el futuro será posible construir un dispositivo comercial que actúe como módulo solar y produzca corriente alterna directamente”.

Este trabajo es el resultado de una investigación financiada por el Gobierno Vasco, por el Ministerio de Economía y Competitividad de España y por la Unión Europea a través del European Research Council.

CIC nanoGUNE participa en dos proyectos europeos para formar a jóvenes investigadores

Las Redes de Formación de la Unión Europea aúnan universidades, centros de investigación y empresas de varios países del mundo para formar a una nueva generación de investigadores. Esta subvención fomenta la excelencia científica y la innovación empresarial, así como las perspectivas de carrera de los investigadores mediante el desarrollo de sus habilidades emprendedoras, creativas e innovadoras.

Estas redes están dirigidas a la formación de jóvenes investigadores denominados ESR —Early Stage Resercher—, investigadores que no hayan obtenido el título de doctor y estén en sus primeros 4 años de investigación. En 2018, nanoGUNE acogerá cuatro investigadores ESR, quienes participarán en los proyectos QuESTech y HYCOAT en los grupos de Nanodispositivos y Nanomateriales de nanoGUNE, respectivamente. La convocatoria para solicitar alguna de estas cuatro becas está aún abierta en la página del centro www.nanogune.eu. Estos jóvenes investigadores se formarán en los campos de la electrónica cuántica y los recubrimientos híbridos.

QuESTech

El grupo de Nanodispositivos de nanoGUNE participa en el proyecto “Quantum Electronics Science and Technology training”, con el acrónimo QuESTech, que creará una red europea de expertos para ofrecer una formación de vanguardia a jóvenes investigadores en el campo de la electrónica cuántica. El objetivo principal de este proyecto será construir, estudiar y clasificar los dispositivos electrónicos cuánticos. QuESTech formará 15 jóvenes investigadores en los subcampos de la espintrónica, electrónica única, puntos cuánticos y termodinámica cuántica. Los proyectos de investigación individuales incluirán desarrollos tecnológicos como el crecimiento de nanomateriales, nanoestructuración, microscopía de campo cercano, medición de transporte bajo condiciones extremas y cálculos teóricos. Varios de los resultados de QuESTech ya han sido identificados como de interés comercial para la emergente industria de la electrónica cuántica.

HYCOAT

Las películas delgadas de materiales híbridos diseñados a escala molecular pueden permitir avances en varias áreas relevantes como el envasado y encapsulado, la electrónica, las baterías y las aplicaciones biomédicas. La Deposición de Capa Molecular (MLD, Molecular Layer Deposition) es la técnica de deposición ideal para el crecimiento de películas híbridas ultradelgadas, uniformes y con un control preciso y flexible sobre el espesor de la película y la composición química a escala molecular. El objetivo de la Red Europea de Formación HYCOAT, en la que participa el grupo de Nanomateriales de nanoGUNE, está enfocada a crear un grupo de jóvenes investigadores bien formados que tengan un conocimiento profundo de todos los aspectos de la tecnología MLD, así como una amplia visión sobre el potencial de aplicación de los recubrimientos híbridos.

Según explica Jose María Pitarke, Director de nanoGUNE, “estos proyectos aportan prestigio internacional, tanto para el investigador predoctoral (que va a formarse en un grupo excelente) como para la institución de acogida (que recibe investigadores internacionales con uno de los programas de doctorado más competitivos de Europa)”. “Además —apunta Pitarke—, el hecho de formar parte de estos proyectos abre las puertas a otros proyectos futuros. Es un punto fuerte muy valorado por la Comisión Europea y los revisores a la hora de conceder financiación”. Por último, “permite establecer nuevas redes de contacto, beneficiosas para los jóvenes investigadores, ya que se establecen fuertes enlaces con las instituciones del consorcio, el cual puede continuar y aportar beneficios una vez acabado el programa”, añade.

Investigadores vascos ponen la luz “patas arriba”

Ilustración de ondas propagándose desde una fuente puntual. Izquierda: Propagación normal de ondas en una superficie. Derecha: Propagación inusual de ondas en una metasuperficie hiperbólica (P. Li, CIC nanoGUNE)

Las ondas ópticas que se propagan desde una fuente puntual normalmente exhiben frentes de onda circulares. “Como las ondas en una superficie de agua cuando se arroja una piedra”, explica Peining Li, investigador postdoctoral en nanoGUNE y primer autor del artículo. La razón de esta propagación circular es que el medio a través del cual viaja la luz es típicamente homogéneo e isótropo, es decir, uniforme en todas las direcciones.

Los científicos ya habían predicho teóricamente que determinadas superficies estructuradas pueden poner la luz “patas arriba” cuando se propaga a lo largo de ellas. “En estas superficies, conocidas como 'metasuperficies hiperbólicas', las ondas emitidas por una fuente puntual viajan sólo en determinadas direcciones y además, con frentes de onda abiertos (cóncavos)”, explica Javier Alfaro, estudiante de doctorado en nanoGUNE y coautor del artículo. Debido a su propagación direccional y a que su longitud de onda es mucho más pequeña que la de la luz en el espacio libre o en fibras ópticas, estas ondas podrían ayudar a miniaturizar los dispositivos ópticos para la detección y el procesamiento de señales.

Ahora, los investigadores han desarrollado una metasuperficie para la luz infrarroja. Esta metasuperficie está hecha de nitruro de boro, un material bidimensional similar al grafeno, que posee una extraordinaria capacidad para manipular la luz infrarroja a escalas extremadamente pequeñas. Esta propiedad puede ser empleada para el desarrollo de sensores químicos miniaturizados o para el control de la transmisión de calor en nanodispositivos. Por otro lado, han logrado observar por primera vez frentes de onda cóncavos en el infrarrojo gracias a un microscopio óptico muy especial.

La fabricación de metasuperficies hiperbólicas es compleja ya que requiere de una estructuración extremadamente precisa de dimensiones nanométricas. Irene Dolado, estudiante de doctorado en nanoGUNE, y Saül Velez, ex investigador postdoctoral en nanoGUNE (ahora en ETH Zürich), han superado este reto utilizando técnicas avanzadas como la litografía por haz de electrones y el grabado en pequeñas láminas de nitruro de boro de alta calidad proporcionado por la Universidad Estatal de Kansas. “Después de varias optimizaciones, hemos logrado la precisión requerida y hemos obtenido una rejilla con un espaciado tan pequeño como 25 nm“, apunta Irene Dolado. “Los mismos métodos de fabricación también se pueden aplicar a otros materiales y podrían utilizarse para realizar metasuperficies artificiales con propiedades ópticas a medida”, añade Saül Vélez.

De la teoría a la realidad 

Para observar cómo se propagan las ondas en la metasuperficie, los investigadores han usado una técnica de nanoimagen infrarroja de vanguardia que ha sido desarrollada por el propio grupo de Nanoóptica de nanoGUNE. Primero colocaron una nanoantena de oro sobre la metasuperficie. “De este modo, la nanoantena genera ondas de la misma manera que lo hace una piedra cuando la tiramos al agua”, comenta Peining Li. La nanoantena concentra la luz infrarroja incidente en un pequeño foco que lanza las ondas que se propagan sobre la metasuperficie. Los investigadores tomaron las imágenes de las ondas utilizando un microscopio óptico de barrido de campo cercano (s-SNOM). “Fue increíble ver las imágenes. Mostraban la curvatura cóncava de los frentes de onda que se propagaban desde la nanoantena de oro, exactamente tal y como predice la teoría”, dice Rainer Hillenbrand, investigador Ikerbasque en nanoGUNE, quien ha dirigido la investigación.

Estos prometedores resultados abren la puerta a la utilización de otros exóticos materiales bidimensionales como plataforma para realizar nanocircuitos y metasuperficies hiperbólicas. Además, demuestran que la microscopía de campo cercano puede emplearse para revelar fenómenos ópticos en materiales anisótropos y en metasuperficies.

La investigación ha sido financiada principalmente por subvenciones individuales de las acciones Marie Sklodowsca-Curie de la Unión Europea y los programas de becas de investigación predoctoral del Gobierno Vasco y el Gobierno Español, así como de la Nacional Science Foundation americana, y se ha llevado a cabo en consonancia con los proyectos de nanoGUNE dentro de la iniciativa europea Graphene Flagship.

Fèlix Casanova recibe, por segunda vez, el Premio Intel al Investigador Destacado

Encontrar un sustituto para la actual tecnología electrónica que pueda hacerla más pequeña, más rápida y, lo más importante, energéticamente más eficiente -es decir, que consuma menos- es un desafio global. En los últimos años, Fèlix Casanova y su equipo de nanoGUNE trabajan, en colaboración con la multinacional Intel, en un proyecto de investigación cuyo objetivo es mejorar el rendimiento y el ahorro energético de las computadoras del futuro optimizando la tecnología MESO.

Electrical control of magnetism by electric field and current-induced torques

Albert Fert, French physicist and winner of the Nobel Prize in Physics in 2007, is one of the discoverers of giant magnetoresistance, a physical effect that revolutionised hard disk technology, allowing a huge increase in its capacity. His research enabled the capacity and applications of the hard disk drive to be increased, and he is now working towards a new generation of microprocessors t

Plasmones del grafeno, una luz para los dispositivos de nueva generación

Investigadores de nanoGUNE, en colaboración con el ICFO y Graphenea, proponen una plataforma tecnológica basada en antenas metálicas que permiten atrapar y controlar la luz en grafeno, un material de un solo átomo de espesor. Los experimentos muestran que la luz guiada en el grafeno, extremadamente confinada al mismo, puede ser dirigida y curvada, siguiendo los principios fundamentales de la óptica convencional. Por tanto, el trabajo, publicado ayer en la prestigiosa revista científica Science, abre nuevas oportunidades para el desarrollo de dispositivos y circuitos fotónicos más pequeños y más rápidos.

Los circuitos y dispositivos ópticos podrían realizar el procesamiento de señales y la computación mucho más rápidamente. "Sin embargo, aunque la luz es muy rápida, necesita demasiado espacio", explica Rainer Hillenbrand, profesor Ikerbasque en nanoGUNE y la UPV/EHU. De hecho, la propagación de la luz necesita al menos el espacio de la mitad de su longitud de onda, que es mucho más grande que los componentes electrónicos básicos de última generación en nuestros ordenadores. Por esa razón, surge el desafío de comprimir la luz y controlar su propagación en la nanoescala a través de un material dado.

El asombroso grafeno, material de una sola capa de átomos de carbono con propiedades extraordinarias, puede ser la solución. La longitud de onda de la luz capturada por una capa de grafeno puede ser reducida considerablemente, en un factor de 10 a 100, en comparación con la luz que se propaga en el espacio libre. Como consecuencia, esta luz que se propaga a lo largo de la capa de grafeno —llamada plasmón del grafeno— requiere mucho menos espacio.

Sin embargo, la transformación de manera eficiente de la luz en plasmones del grafeno y su manipulación con un dispositivo compacto es todo un reto tecnológico. Un equipo de investigadores de nanoGUNE, ICFO y Graphenea —miembros del Grafene Flagship de la UE— demuestra ahora que el concepto de antena comúnmente utilizado para las ondas de radio podría ser una solución prometedora. El equipo muestra que una barra de metal de tamaño nanométrico colocada sobre el grafeno puede captar luz infrarroja (actúando como una antena para la luz) y transformarla en plasmones del grafeno, de forma análoga a una antena de radio que convierte las ondas de radio en ondas electromagnéticas en un cable metálico.

"Presentamos una plataforma tecnológica versátil, basada en antenas ópticas resonantes, para el lanzamiento y el control de la propagación de plasmones del grafeno, lo que representa un paso esencial para el desarrollo de circuitos plasmónicos con grafeno", comenta el líder del equipo, Rainer Hillenbrand. Pablo Alonso-González, quien llevó a cabo los experimentos en nanoGUNE, destaca algunas de las ventajas que ofrece el dispositivo de antena: "La excitación de los plasmones del grafeno es puramente óptica, el dispositivo es compacto y la fase y los frentes de onda de los plasmones se pueden controlar directamente mediante la adaptación de la geometría de las antenas. Esto es esencial para el desarrollo de aplicaciones ópticas basadas en el enfoque y guiado de luz".

 

Representación gráfica de la refracción de los plasmones del grafeno - puesta en marcha por una antena de oro minúsculo - al pasar por un prisma de un solo átomo de espesor (nanoGUNE).

El equipo de investigación también realizó estudios teóricos. Alexey Nikitin, Ikerbasque Fellow en nanoGUNE y autor de los cálculos, explica que "de acuerdo a la teoría, la operación de nuestro dispositivo es muy eficiente, y todas las futuras aplicaciones tecnológicas dependerán, esencialmente, de las limitaciones en la fabricación y la calidad del grafeno".

Basándose en los cálculos de Nikitin, el grupo de Nanodispositivos de nanoGUNE, liderado por los investigadores Ikerbasque Luis Hueso y Félix Casanova, fabricó nanoantenas de oro sobre grafeno proporcionado por Graphenea. Posteriormente, el grupo de Nanoóptica utilizó el microscopio de campo cercano NEASPEC para visualizar cómo los plasmones del grafeno se ponen en marcha y se propagan a lo largo de la capa de grafeno. En las imágenes, los investigadores vieron que, efectivamente, las ondas sobre el grafeno se propagan lejos de la antena, de la misma forma que se propagan las olas en una superficie de agua cuando se lanza una piedra a la misma.

Con el fin de probar si la propagación de luz a lo largo de una capa de carbono de un solo átomo de grosor sigue las leyes de la óptica convencional, los investigadores diseñaron distintos experimentos para enfocar y refractar la luz. Para el experimento de enfoque, curvaron la antena. Las imágenes resultantes mostraron que los plasmones del grafeno se concentran a una cierta distancia de la antena, como cuando un haz de luz se focaliza con una lente o espejo cóncavo. 

El grupo también observó que los plasmones del grafeno se refractan (cambian de dirección) cuando pasan a través de una doble capa de grafeno en forma de prisma, de forma análoga a como se flexiona un haz de luz al pasar a través de un prisma de cristal. "La principal diferencia es que el prisma de grafeno es de solo dos átomos de espesor. Es el prisma óptico refractor más delgado que se conoce", dice Rainer Hillenbrand. Curiosamente, los plasmones del grafeno cambian de dirección porque la conductividad es mayor en el prisma de dos átomos de espesor que en la capa de un solo átomo que lo rodea. En el futuro, tales cambios de conductividad en el grafeno podrían ser establecidos por medios electrónicos simples, lo que permitiría un control altamente eficiente de la refracción, entre otros, para aplicaciones de guiado de luz.

En definitiva, los experimentos muestran que los principios fundamentales y más importantes de la óptica convencional también se aplican a los plasmones del grafeno, es decir, a luz extremadamente comprimida que  se propaga a lo largo de una sola capa de átomos de carbono. Los futuros desarrollos basados en estos resultados podrían conducir a circuitos y dispositivos ópticos extremadamente miniaturizados que podrían ser útilizados en aplicaciones de detección y computación.

Publicación original

P. Alonso-González1, A.Y. Nikitin1,5, F. Golmar1,2, A. Centeno3, A. Pesquera3, S. Vélez1, J. Chen1, G. Navickaite4, F. Koppens4<, A. Zurutuza3, F. Casanova 1,5, L.E. Hueso 1,5 and R. Hillenbrand 1,5. “Controlling grapheme plasmons with resonant metal antennas and spatial conductivity patterns” Science (2014), DOI: 10.1126/science.1253202

  • CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain.
  • I.N.T.I-CONICET and ECyT-UNSAM, San Martín, Bs. As., Argentina.
  • Graphenea SA, 20018 Donostia-San Sebastián, Spain.
  • ICFO-Institut de Ciéncies Fotoniques, Mediterranean Technology Park, 08860 Casteldefells, Barcelona, Spain.
  • IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.

 

La investigadora del CIC nanoGUNE Estitxu Villamor ha obtenido una mención especial en los Premios CAF-Elhuyar

Gorka Azkune, Ostaizka Aizpurua, Amaia Portugal and Estitxu Villamor, vencedores de los Premios CAF-Elhuyar. Imagen: Iñigo Ibañez - Zientzia.eus

Entre las categorías y subcategorías existentes en los premios, está la categoría de artículos de divulgación basados en tesis doctorales. Precisamente, han hecho mención especial al artículo de Estitxu Villamor titulado "Karga-garraiorik gabeko elektronika berria" (La nueva electrónica sin transporte de carga), ya que el jurado ha considerado digno de mención "el esfuerzo de la autora del artículo por exponer el tema de manera comprensible y atractiva, máxime tratándose de una cuestión muy técnica".







Normal
0




false
false
false

EU
JA
X-NONE

























DefSemiHidden="true" DefQFormat="false" DefPriority="99"
LatentStyleCount="276">
UnhideWhenUsed="false" QFormat="true" Name="Normal">
UnhideWhenUsed="false" QFormat="true" Name="heading 1">


















UnhideWhenUsed="false" QFormat="true" Name="Title">

UnhideWhenUsed="false" QFormat="true" Name="Subtitle">
UnhideWhenUsed="false" QFormat="true" Name="Strong">
UnhideWhenUsed="false" QFormat="true" Name="Emphasis">
UnhideWhenUsed="false" Name="Table Grid">

UnhideWhenUsed="false" QFormat="true" Name="No Spacing">
UnhideWhenUsed="false" Name="Light Shading">
UnhideWhenUsed="false" Name="Light List">
UnhideWhenUsed="false" Name="Light Grid">
UnhideWhenUsed="false" Name="Medium Shading 1">
UnhideWhenUsed="false" Name="Medium Shading 2">
UnhideWhenUsed="false" Name="Medium List 1">
UnhideWhenUsed="false" Name="Medium List 2">
UnhideWhenUsed="false" Name="Medium Grid 1">
UnhideWhenUsed="false" Name="Medium Grid 2">
UnhideWhenUsed="false" Name="Medium Grid 3">
UnhideWhenUsed="false" Name="Dark List">
UnhideWhenUsed="false" Name="Colorful Shading">
UnhideWhenUsed="false" Name="Colorful List">
UnhideWhenUsed="false" Name="Colorful Grid">
UnhideWhenUsed="false" Name="Light Shading Accent 1">
UnhideWhenUsed="false" Name="Light List Accent 1">
UnhideWhenUsed="false" Name="Light Grid Accent 1">
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1">
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1">
UnhideWhenUsed="false" Name="Medium List 1 Accent 1">

UnhideWhenUsed="false" QFormat="true" Name="List Paragraph">
UnhideWhenUsed="false" QFormat="true" Name="Quote">
UnhideWhenUsed="false" QFormat="true" Name="Intense Quote">
UnhideWhenUsed="false" Name="Medium List 2 Accent 1">
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1">
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1">
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1">
UnhideWhenUsed="false" Name="Dark List Accent 1">
UnhideWhenUsed="false" Name="Colorful Shading Accent 1">
UnhideWhenUsed="false" Name="Colorful List Accent 1">
UnhideWhenUsed="false" Name="Colorful Grid Accent 1">
UnhideWhenUsed="false" Name="Light Shading Accent 2">
UnhideWhenUsed="false" Name="Light List Accent 2">
UnhideWhenUsed="false" Name="Light Grid Accent 2">
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2">
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2">
UnhideWhenUsed="false" Name="Medium List 1 Accent 2">
UnhideWhenUsed="false" Name="Medium List 2 Accent 2">
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2">
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2">
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2">
UnhideWhenUsed="false" Name="Dark List Accent 2">
UnhideWhenUsed="false" Name="Colorful Shading Accent 2">
UnhideWhenUsed="false" Name="Colorful List Accent 2">
UnhideWhenUsed="false" Name="Colorful Grid Accent 2">
UnhideWhenUsed="false" Name="Light Shading Accent 3">
UnhideWhenUsed="false" Name="Light List Accent 3">
UnhideWhenUsed="false" Name="Light Grid Accent 3">
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3">
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3">
UnhideWhenUsed="false" Name="Medium List 1 Accent 3">
UnhideWhenUsed="false" Name="Medium List 2 Accent 3">
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3">
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3">
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3">
UnhideWhenUsed="false" Name="Dark List Accent 3">
UnhideWhenUsed="false" Name="Colorful Shading Accent 3">
UnhideWhenUsed="false" Name="Colorful List Accent 3">
UnhideWhenUsed="false" Name="Colorful Grid Accent 3">
UnhideWhenUsed="false" Name="Light Shading Accent 4">
UnhideWhenUsed="false" Name="Light List Accent 4">
UnhideWhenUsed="false" Name="Light Grid Accent 4">
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4">
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4">
UnhideWhenUsed="false" Name="Medium List 1 Accent 4">
UnhideWhenUsed="false" Name="Medium List 2 Accent 4">
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4">
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4">
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4">
UnhideWhenUsed="false" Name="Dark List Accent 4">
UnhideWhenUsed="false" Name="Colorful Shading Accent 4">
UnhideWhenUsed="false" Name="Colorful List Accent 4">
UnhideWhenUsed="false" Name="Colorful Grid Accent 4">
UnhideWhenUsed="false" Name="Light Shading Accent 5">
UnhideWhenUsed="false" Name="Light List Accent 5">
UnhideWhenUsed="false" Name="Light Grid Accent 5">
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5">
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5">
UnhideWhenUsed="false" Name="Medium List 1 Accent 5">
UnhideWhenUsed="false" Name="Medium List 2 Accent 5">
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5">
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5">
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5">
UnhideWhenUsed="false" Name="Dark List Accent 5">
UnhideWhenUsed="false" Name="Colorful Shading Accent 5">
UnhideWhenUsed="false" Name="Colorful List Accent 5">
UnhideWhenUsed="false" Name="Colorful Grid Accent 5">
UnhideWhenUsed="false" Name="Light Shading Accent 6">
UnhideWhenUsed="false" Name="Light List Accent 6">
UnhideWhenUsed="false" Name="Light Grid Accent 6">
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6">
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6">
UnhideWhenUsed="false" Name="Medium List 1 Accent 6">
UnhideWhenUsed="false" Name="Medium List 2 Accent 6">
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6">
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6">
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6">
UnhideWhenUsed="false" Name="Dark List Accent 6">
UnhideWhenUsed="false" Name="Colorful Shading Accent 6">
UnhideWhenUsed="false" Name="Colorful List Accent 6">
UnhideWhenUsed="false" Name="Colorful Grid Accent 6">
UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis">
UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis">
UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference">
UnhideWhenUsed="false" QFormat="true" Name="Intense Reference">
UnhideWhenUsed="false" QFormat="true" Name="Book Title">



Villamor defendió su tesis, titulada Injection, transport and manipulation of pure spin currents in metallic lateral spin valves, en diciembre de 2014.