Quantum Hardware

The Quantum Hardware group at CIC nanoGUNE focuses on the development of physical hardware for quantum information processing using devices based on semiconducting, superconducting and hybrid materials. 

Silicon-based quantum computing

We leverage the very same hardware that is used in standard electronics, the silicon transistor, for quantum computing applications.

Quantum charge/spin sensing

We use semiconducting-superconducting hybrid systems to reach the ultimate limits of charge and spin detection sensitivity. 

Quantum-dots based microwave devices

We use semiconductor quantum dots at microwave frequencies to demonstrate new and more efficient electronic devices and circuits such as amplifiers, multipliers and sensors. 

Related Publications

L. Peri, M. Benito, C. J. B. Ford and M. F. Gonzalez-Zalba  
NPJ QUANTUM INFORMATION 10, 114 (2024) 
Unified linear response theory of quantum electronic circuits

G. M. Noah, T.H. Swift, M. de Kruijf, A. Gomez-Saiz, J. J. L. Morton, M.F. Gonzalez-Zalba 
Applied Physics Review 11, 021414 (2024) 
CMOS on-chip thermometry at deep cryogenic temperatures featured

S. M. Patomäki, M. F. Gonzalez-Zalba, M. A. Fogarty, Z. Cai, S. C. Benjamin & J. J. L. Morton 
NPJ QUANTUM INFORMATION 10, 31 (2024)
Pipeline quantum processor architecture for silicon spin qubits

T. Lundberg, D. J. Ibberson, J. Li, L. Hutin, J. C. Abadillo-Uriel, M. Filippone, B. Bertrand, A. Nunnenkamp, C. Lee, N. Stelmashenko, J. W. A. Robinson, M. Vinet, L. Ibberson, Y.M. Niquet & M. F Gonzalez-Zalba 
NPJ QUANTUM INFORMATION 10, 28 (2024)
Non-symmetric Pauli spin blockade in a silicon double quantum dot

L. Peri, G. A. Oakes, L. Cochrane, C. J. B. Ford, and M. F. Gonzalez-Zalba
QUANTUM 8, 1294 (2024)
Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics

Felix-Ekkehard von Horstig, David J. Ibberson, Giovanni A. Oakes, Laurence Cochrane, David F. Wise, Nadia Stelmashenko, Sylvain Barraud, Jason A.W. Robinson, and Frederico Martins et al.
PHYSICAL REVIEW APPLIED 21, 044016 (2024)
Multimodule microwave assembly for fast readout and charge-noise characterization of silicon quantum dots

S. M. Patomäki, J. Williams, F. Berritta, C. Lainé, M. A. Fogarty, R. C. C. Leon, J. Jussot, S. Kubicek, and A. Chatterjee et al.
PHYSICAL REVIEW APPLIED 21, 054042 (2024)
Elongated quantum dot as a distributed charge sensor

M. F. Gonzalez-Zalba, S. de Franceschi, E. Charbon, T. Meunier, M. Vinet & A. S. Dzurak 
NATURE ELECTRONICS 4, 872–884 (2021)
Scaling silicon-based quantum computing using CMOS technology

Not published ARXIV papers

Lorenzo Peri, Felix-Ekkehard von Horstig, Sylvain Barraud, Christopher J. B. Ford, Mónica Benito, M. Fernando Gonzalez-Zalba
[Submitted on 23 Oct 2024]
Polarimetry With Spins in the Solid State

Jacob F. Chittock-Wood, Ross C. C. Leon, Michael A. Fogarty, Tara Murphy, Sofia M. Patomäki, Giovanni A. Oakes, Felix-Ekkehard von Horstig, Nathan Johnson, Julien Jussot, Stefan Kubicek, Bogdan Govoreanu, David F. Wise, M. Fernando Gonzalez-Zalba, John J. L. Morton
[Submitted on 2 Aug 2024]
Exchange control in a MOS double quantum dot made using a 300 mm wafer process

Felix-Ekkehard von Horstig, Lorenzo Peri, Sylvain Barraud, Sergey N. Shevchenko, Christopher J. B. Ford, M. Fernando Gonzalez-Zalba
[Submitted on 19 Jul 2024]
Floquet interferometry of a dressed semiconductor quantum dot

 

Industrial collaborations

Our group works in close collaboration with the leading quantum computing scale-up company Quantum Motion, a UK-based company dedicated to the development of silicon-based quantum computing hardware. 

Academic collaborators

Christopher Ford 
University of Cambridge

Jason WA Robison 
University of Cambridge

Monica Benito 
Augsburg University

Andras Palyi 
Budapest University of Technology and Economics (BME)