Microsite es: . Grupo:

Attochemistry: imaging and controlling electron dynamics in molecules with attosecond light pulses

Thursday, June 07, 2018 - 12:00
Fernando Martín, Universidad Autónoma de Madrid and IMDEA Nano
Source Name: 

Host: Ricardo Díez Muiño & Pedro Etxenique
Attosecond light pulses allow one to probe the inner workings of atoms, molecules and surfaces on the timescale of the electronic motion. In molecules, sudden ionization by such pulses is followed by charge redistribution on a time scale ranging from a few-femtoseconds down to hundreds attoseconds, and usually leads to fragmentation of the remaining molecular cation. Such complex dynamics arises from the coherent superposition of electronic states populated by the broadband attosecond pulse and from rearrangements in the electronic structure of the molecular cation due to electron correlation. To investigate these ultrafast processes, attosecond pump-probe spectroscopy has been shown to be a very valuable tool [1-8]. In this talk I will present the results of molecular attosecond pump-probe experiments and theoretical simulations in which several molecules, from hydrogen to the amino acid tryptophan, are ionized with a single attosecond pulse and are subsequently probed by an infrared or an XUV pulse. In all cases, the evolution of the electronic and nuclear densities in the remaining molecular cation can be inferred from the measured (or calculated) ionization or fragmentation yields by varying the delay between the pump and probe pulses with attosecond time resolution. The results of these investigations will serve as a guide of future experimental efforts in more complicated molecules and may open the door to the control of charge transfer in biologically relevant processes [9].

[1] G. Sansone, F. Kelkensberg, J. F. Pérez-Torres, F. Morales, M. F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lépine, J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Yu. Ivanov, M. Nisoli, F. Martín, and M. J. J. Vrakking, Nature 465 (2010) 763.
[2] F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. Greenwood, F. Martín, and M. Nisoli, Science 346 (2014) 336.
[3] A. González-Castrillo, A. Palacios, H. Bachau and F. Martín, Phys. Rev. Lett. 108 (2012) 063009.
[4] A. Palacios, A. González-Castrillo and F. Martín, Proc. Natl. Acad. Sci. 111 (2014) 3973.
[5] P. Ranitovic, C. W. Hogle, P. Rivière, A. Palacios, X.-M. Tong, N. Toshima, A. González-Castrillo, L. Martina, F. Martín, M. M. Murnane, and H. Kapteyn, Proc. Natl. Acad. Sci. 111 (2014) 912.
[6] A. Trabattoni, M. Klinker, J. González-Vázquez, C. Liu, G. Sansone, R. Linguerri, M. Hochlaf, J. Klei, M. J. J. Vrakking, F. Martín, M. Nisoli and F. Calegari, Phys. Rev. X 5 (2015) 041053.
[7] M. Lara-Astiaso, D. Ayuso, I. Tavernelli, P. Decleva, A. Palacios, and F. Martín, Faraday Disc. 194 (2016) 41.
[8] M. Lara-Astiaso, A. Palacios, P. Decleva, I. Tavernelli and F. Martín, Chem. Phys. Lett. 683 (2017) 357.
[9] M. Nisoli, P. Decleva, F. Calegari, A. Palacios, and F. Martín, Chem. Rev. 117 (2017) 10760.

We use third party cookies to improve our services and tailor the website to your surfing habits. By continuing to browse the site, you are agreeing to our use of cookies policy. Further information on the use of cookies.