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Local and semilocal density functional approximations for the exchange-correlation energy fail badly
in the zero-thickness limit of a quasi-two-dimensional electron gas, where the density variation is rapid
almost everywhere. Here we show that a fully nonlocal fifth-rung functional, the inhomogeneous Singwi-
Tosi-Land-Sjölander (STLS) approach, which employs both occupied and unoccupied Kohn-Sham
orbitals, recovers the true two-dimensional STLS limit and appears to be remarkably accurate for any
thickness of the slab (and thus for the dimensional crossover). We also show that this good behavior is
only partly due to the use of the full exact exchange energy.
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One of the main goals of electronic-structure theory is
prediction of the energy of inhomogeneous interacting
many-electron systems. Time-independent and time-
dependent density functional theories (DFT and TDDFT)
[1] provide calculable predictions, respectively, for ground
and excited states, and are intimately linked together. In
these theories, the noninteracting kinetic energy is treated
as an exact functional of the occupied Kohn-Sham (KS)
orbitals [2], and only the exchange-correlation (xc) energy
Exc and/or potential vxc�r� have to be approximated. These
theories entail a hierarchy of approximations for exchange
and correlation. The more sophisticated approximations
satisfy many exact conditions, but must still be carefully
tested for accuracy and reliability. In this Letter, we test the
inhomogeneous Singwi-Tosi-Land-Sjölander (STLS)
method [3] for the quasi-two-dimensional (2D) electron
gas, a problem that becomes increasingly challenging for
density functionals as the true 2D or zero-thickness limit is
approached [4,5].

The ladder classification [6] of ground-state density
functionals for Exc has three complete nonempirical rungs:
the local-spin-density approximation (LSDA) [7], the
generalized-gradient approximation (GGA) [8], and the
meta-GGA [9]. The meta-GGA, which satisfies many exact
constraints but still uses to some extent the error cancella-
tion between exchange and correlation, has as ingredients
the spin densities n" and n#, their gradients rn" and rn#,
and the KS noninteracting kinetic energy densities �" and
�#. These local and semilocal density functionals (LSDA,
GGA, and meta-GGA) work for atoms, molecules, solids,
and surfaces [10]. They also work for atomic monolayers
[11] and other quasi-2D systems [12], but they fail as the
true 2D limit is approached [13,14], because of the high
inhomogeneity of the electron density along the confined
direction. The failure of local and semilocal density func-
tionals to describe the dimensional crossover of the exact

xc functional has been avoided by using nonlocal models
such as the weighted-density approximation [15].

The next rung of the ladder is the hyper-GGA (HGGA)
[16], a nonlocal-functional approximation which uses the
Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA [9]
ingredients and the conventional exact exchange energies
per particle �x" and �x# [17]. For the xc energy per particle
at position r, one writes

 �HGGA
xc � �x � �1� a���TPSS

x � ~�x� � �TPSS
c : (1)

Here ~�x�r� is the exact exchange energy per particle in the
TPSS gauge [17], and a�r� is a nonlocal functional
bounded between 0 and 1. The second term on the right-
hand side of Eq. (1) is the static correlation and was built
such that, together with the TPSS (dynamic) correlation, it
is compatible with exact exchange. The mixing parameter
a�r� goes to 1 when exact exchange is much bigger than
correlation (for one-electron systems and for the high-
density limit), when the density is rapidly varying, and
when an open system has a high fluctuation of electron
number in spin-polarized regions at the Hartree-Fock level.
HGGA satisfies more exact constraints than any semilocal
functional. To balance the full nonlocality of exact ex-
change, universal empirical parameters are invoked in
HGGA correlation and fitted to chemical data. The set of
parameters adopted here is for use with TPSS orbitals. We
show that this HGGA partially avoids the bad behavior of
the semilocal xc density functionals for the quasi-2D elec-
tron gas.

The central equation of TDDFT linear response (at
frequency !), in which all the objects are functionals of
the ground-state density, is a Dyson-like equation for the
density-response function ��r; r0;!� (in atomic units
where e2 � @ � me � 1) [18]:
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 ��r; r0;!� � �0�r; r0;!� �
Z
dr1dr2�0�r; r1;!�

�

�
1

jr1 � r2j
� fxc�n��r1; r2;!�

�
��r2; r0;!�;

(2)

where �0�r; r0;!� is the density-response function of non-
interacting KS electrons and is exactly expressible in terms
of KS orbitals [19], and fxc�n��r; r0;!� is the dynamic xc
kernel which must be approximated. When fxc�n��r; r0;!�
is taken to be zero, Eq. (2) reduces to the screening
equation of the time-dependent Hartree or random
phase approximation (RPA). The xc energy can then be
calculated using the adiabatic-connection fluctuation-
dissipation formula [20], which allows TDDFT to produce
sophisticated approximations to the ground-state xc en-
ergy. In particular, the RPA has been evaluated for the
quasi-2D electron gas [15,21] and it reaches the RPA 2D
electron gas limit; however, the RPA xc energy per particle
�RPA

xc for the 2D uniform electron gas underestimates the
exact �xc by more than 0:02 hartree=e� [15]. In order to go
beyond the RPA, various approximations have been con-
structed for the xc kernel, but they have mainly been taken
from the 3D uniform electron gas [23] and do not take the
dimensional crossover into account.

The inhomogeneous STLS (ISTLS) [3] is, like the RPA
it corrects, a fifth-rung density functional that employs
both occupied and unoccupied Kohn-Sham orbitals. The
main idea of ISTLS (and STLS [24]) relies on the trunca-
tion of the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy of the kinetic equations [25], by as-
suming that the two-particle dynamic pair-distribution
function f�2��r;p; r0;p0; t� can be expressed in terms of
the single-particle distribution function f�r;p; t� as

 f�2��r;p; r0;p0; t� � g�r; r0�f�r;p; t�; f�r0;p0; t�; (3)

where g�r; r0� is the static (and momentum-independent)
equilibrium pair-correlation function.

Using the linearity and time invariance of the truncated
BBGKY equation, Dobson et al. [3] found the following
Dyson-like ‘‘screening’’ integral equation for the density-
response function:

 ��r; r0;!� � �0�r; r0;!� �
Z
dr00Q�r; r00;!���r00; r0;!�;

(4)

where

 Q�r; r0;!� � �
Z
dr00�0�r; r00;!� 	 g�r00; r0�rr00

1

jr00 � r0j
:

(5)

Here, �0�r; r0;!� is a vector response function, which
satisfies the equation

 �0�r; r0;!� � rr0 	 �0�r; r0;!�: (6)

The equilibrium pair-correlation function g�r; r0� is ob-

tained from the fluctuation-dissipation theorem [20]:

 g�r; r0� � 1�
1

�n�r�n�r0�

Z 1
0
du��r; r0; iu� �

��r� r0�
n�r0�

:

(7)

Equations (4)–(7) are solved self-consistently, until a con-
verged solution is obtained. This ISTLS scheme yields the
exact exchange energy, as does the TDDFT scheme de-
scribed above [see Eq. (2)], and only the correlation energy
is approximated. ISTLS correlation is exact for all one-
electron densities.

For the 2D and 3D uniform electron gases, the STLS
approach made a remarkably accurate prediction of the
correlation energy over a wide range of densities (for 3D,
1 
 rs 
 20, and for 2D, 0:5 
 r2D

s 
 16), as confirmed
by quantum Monte Carlo (QMC) calculations (see Table I
of Ref. [26] and references therein) [27]. The STLS ap-
proximation is also known to yield reasonable ground-state
energies for the 1D and 2D Hubbard models in the half
filled antiferromagnetic states [28]. Furthermore, the
ISTLS, which is a high-level correlated approach that
predicts (and does not use as input) the correlation energy
of the 3D and 2D uniform gases, has been shown to yield
accurate jellium xc surface energies that are close to their
LSDA and RPA counterparts, and has been used to dem-
onstrate that a local-density approximation for the particle-
hole interaction is adequate to describe the surface energy
of simple metals [26].

A 2D uniform electron gas is described by the 2D
electron-density parameter r2D

s � 1=
�����������
�n2D
p

�
���
2
p
=k2D

F ,
where n2D is the density of electrons per unit area, and
k2D
F represents the magnitude of the corresponding 2D

Fermi wave vector. The 2D exchange energy per particle is

 �2D
x � ��4

���
2
p
=�3���=r2D

s : (8)

A realistic interpolation (which uses QMC data) between
the high- and low-density limits of the 2D correlation
energy per particle is [13,29]

 �2D
c � 0:5058

�
1:3311

�r2D
s �

2 �
������������������������������
1� 1:5026r2D

s

q
� 1� �

1

r2D
s

�
:

(9)

For the description of a quasi-2D electron gas, we con-
sider a quantum well of thickness L in the z direction. In
the infinite barrier model (IBM) [30] for a quantum well,
the KS effective one-electron potential is replaced by zero
inside infinitely high potential walls at z � 0 and z � L.
Hence, the normalized KS one-electron wave functions
and energies at 0 
 z 
 L are

 �l;kk �rk; z� �

�������
2

AL

s
sin
�
l�
L
z
�
eikk	rk (10)

and
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 El;kk �
1

2

��
l�
L

�
2
� k2

k

�
; (11)

where A represents the normalization area in the xy plane, l
is the subband index, and rk and kk represent the position
and the wave vector in the xy plane. In this model the
electrons cannot leak out of the well, so the true 2D
electron-gas limit is recovered by simply shrinking the
well. When only the lowest level is occupied (E1;k2D

F
<

E2;0, i.e., L<
��������
3=2

p
�r2D

s � Lmax [13]), the density of
states of this quantum well begins to resemble the density
of states of a 2D electron gas, the motion in the z direction
is frozen out, and the system can be considered quasi-two-
dimensional.

We would like to contract or expand the electron density
n�z� without changing the total number of electrons per
unit area. Hence, we perform a one-dimensional scaling of
the form n��z� � �n��z� [31], which as �! 1 yields the
true 2D limit. This scaled electron density coincides with
the electron density that one would find from Eq. (10) by
simply replacing the quantum-well thickness L by L=�
[13]. The corresponding exchange and correlation energies
per particle, "x�n�� and "c�n��, should satisfy the follow-
ing scaling relations [13]:

 lim
�!1

"x�n��>�1; 0> lim
�!1

"c�n��>�1: (12)

These equations, which start from those of Ref. [31], are
not satisfied by the LSDA, GGA, and meta-GGA.

Here we investigate the performance of the ISTLS ap-
proach to describe the IBM quasi-2D electron gas for
thicknesses L such that L < Lmax. We choose quasi-2D
electron gases of fixed 2D electron-density parameters:
r2D
s � 2=

���
3
p

(as in Fig. 1 of Ref. [15]) and r2D
s � 4 (as in

Figs. 2 and 3 of Ref. [13]). The self-consistent ISTLS
scheme [Eqs. (4)–(7)] was solved numerically using occu-
pied and unoccupied orbitals of the form of Eq. (10). Our
numerical scheme is similar to the one described in
Ref. [26]; however, in contrast to the jellium surface-
energy calculation reported in Ref. [26], where the
ISTLS self-consistent scheme converges rapidly, in the
case of the quasi-2D electron-gas calculation the conver-
gence is slow (especially when L� Lmax) [32] and special
care must be taken to perform the frequency integration of
Eq. (7).

Figures 1 and 2 show the results we have obtained, as a
function of the quantum-well thickness Lmax=�, for the
exact exchange energy per particle "x and the xc energy per
particle "xc in the following approximations: LSDA, PBE-
GGA [8], HGGA, RPA, and ISTLS. We observe that, while
local and semilocal density functional approximations
(LSDA and PBE-GGA) fail badly in the zero-thickness
(2D) limit, both the RPA and the ISTLS nicely recover
their 2D counterparts, which in the case of the ISTLS
(�0:62 hartree for r2D

s � 2=
���
3
p

and �0:20 hartree for
r2D
s � 4 [33]) are very close to the prediction of Eqs. (8)

and (9) or, equivalently, QMC calculations (�0:63 and

�0:21, respectively). The RPA xc energy per particle,
however, considerably underestimates "xc for all slab
thicknesses [34]. Figures 1 and 2 show that the ISTLS xc
energy not only approaches closely the exact 2D limit but
has also the correct behavior in the limit L! Lmax, which
is expected to be well described within the LSDA, GGA,
and HGGA. The meta-GGA curves, not shown in Figs. 1
and 2, are found to be very close to their GGA counterparts.
We note that the HGGA greatly improves over GGA (and
meta-GGA) and is more accurate than RPA for almost all
values of the slab thickness.

Most of the functionals tested in Figs. 1 and 2 have been
(exact exchange, LSDA, PBE) or could be (HGGA,
ISTLS) useful in condensed-matter physics and quantum
chemistry. For all of those except LSDA and ISTLS, the
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FIG. 1. Exchange-correlation energy per particle of an IBM
quasi-2D electron gas of fixed 2D electron density (r2D

s �
2=

���
3
p

), as a function of the quantum-well thickness Lmax=�
(Lmax � 4:44). The 2D limit is from Eqs. (8) and (9). Various
density functional approximations have been used (LSDA, PBE-
GGA, and HGGA), as well as the fifth-rung RPA and ISTLS.
The exact exchange energy per particle "x is also plotted, for
comparison. While the local and semilocal density functionals
diverge in the 2D limit, RPA and ISTLS calculations nicely
recover the corresponding xc energy of a 2D electron gas. The
HGGA recovers the 2D exact exchange limit; i.e., as in the case
of the LSDA and the PBE-GGA, the HGGA correlation energy
per particle goes to zero in the 2D limit.
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FIG. 2. As in Fig. 1, but now for r2D
s � 4 (Lmax � 15:39).
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correlation energy per electron tends to zero as the
quantum-well thickness Lmax=� goes to zero; for ISTLS,
it tends to a realistic negative value.

In summary, we have shown that the ISTLS approach [3]
correctly and remarkably describes the dimensional cross-
over (from 3D to 2D) of the xc energy. The quasi-2D
electron gas is an important and difficult test for density
functional approximations. This test is related to the one-
dimensional scaling, an exact constraint which is not sat-
isfied by LSDA, GGA, or meta-GGA. The fourth-rung
hyper-GGA with full exact exchange [see Eq. (1)] is found
to improve considerably the behavior of local and semi-
local density functionals over the whole thickness range of
the quasi-2D electron gas. The fifth-rung ISTLS scheme,
which uses as input all occupied and unoccupied KS
orbitals and is numerically more expensive [35], is found
to be remarkably accurate for the description of various
quasi-2D systems (where second-order correlation can
suffice [36]). Because of its accuracy in describing both
the jellium surface energy [26] and the energy per particle
of a quasi-2D electron gas, we believe that further work in
testing and improving the ISTLS scheme could be impor-
tant. Thus far, the computational cost of ISTLS has limited
its applications to situations in which the density variation
is effectively 1D [26]. Some chemical tests have been
carried out, however, at the RPA level [37], and these
calculations could well be extended within the full
ISTLS scheme.
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